Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/10442/16994
Εξειδίκευση τύπου : | Άρθρο σε επιστημονικό περιοδικό |
Τίτλος: | Core–Shell Pd@M (M=Ni, Cu, Co) Nanoparticles/Graphene Ensembles with High Mass Electrocatalytic Activity Toward the Oxygen Reduction Reaction |
Δημιουργός/Συγγραφέας: | Perivoliotis D.K. Sato Y. Suenaga K. [EL] Ταγματάρχης, Νίκος[EN] Tagmatarchis, Nikos |
Εκδότης: | Wiley-VCH Verlag |
Ημερομηνία: | 2019 |
Γλώσσα: | Αγγλικά |
ISSN: | 0947-6539 |
DOI: | 10.1002/chem.201901588 |
Άλλο: | PubMed ID: 31152611 |
Περίληψη: | Herein, it is demonstrated that pyrene butyric acid (PBA)-stabilized metal nanoparticles with core–shell morphology, Pd@MNPs (M=Ni, Cu, Co), non-covalently supported on graphene (G) sheets, are more active towards oxygen electroreduction in alkaline environments than the benchmark Pd/C catalyst, albeit with a 70 % lower precious metal loading. The PBA-stabilized Pd@MNPs (M=Ni, Cu, Co)/G ensembles were prepared by employing a simple modified polyol method and galvanic replacement and thoroughly characterized with advanced microscopy imaging and complementary spectroscopic techniques. Electrochemical studies revealed that Pd@NiNPs/G presents the optimum performance, exhibiting a 30 mV more positive onset potential and 3.2 times greater mass activity over Pd/C. Moreover, chronoamperometric assays showed the minimum activity loss for Pd@NiNPs/G, not only among its core–shell counterparts but importantly when compared with the benchmark catalyst. The excellent performance of Pd@NiNPs/G was attributed to the (a) presence of PBA as stabilizer, (b) uniform Pd@NiNPs dispersion onto the graphene sheets, (c) efficient intra-ensemble interactions between the two species, (d) existence of the core–shell structure for Pd@NiNPs, and (e) stability of the Ni core metal under the reaction conditions. Last, the oxygen reduction on Pd@NiNPs/graphene occurs by the direct four-electron reduction pathway, showing great potential for use in energy related applications. |
Τίτλος πηγής δημοσίευσης: | Chemistry - A European Journal |
Τόμος/Κεφάλαιο: | 25 |
Τεύχος: | 47 |
Σελίδες: | 11105-11113 |
Θεματική Κατηγορία: | [EL] Φυσική και θεωρητική χημεία[EN] Physical and theoretical chemistry |
Λέξεις-Κλειδιά: | core–shell nanoparticles energy conversion graphene hybrid electrocatalysts oxygen reduction reaction |
Αξιολόγηση από ομότιμους (peer reviewed): | Ναι |
Κάτοχος πνευματικών δικαιωμάτων: | © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
Σημειώσεις: | European Commission, EC; Japan Society for the Promotion of Science, KAKEN: JP16H06333, JP19K05223; General Secretariat for Research and Technology, GSRT; European Regional Development Fund, ERDF; Hellenic Foundation for Research and Innovation, ΕΛ.ΙΔ.Ε.Κ: MIS 5002409 Financial support through a Ph.D. scholarship by the General Secretariat for Research and Technology (GSRT)–Hellenic Foundation for Research and Innovation (HFRI) to D.K. Perivoliotis (Grant 95) is acknowledged. We acknowledge support of this work by the project “Advanced Materials and Devices” (MIS 5002409), which is implemented under the “Action for the Strategic Development on the Research and Technological Sector”, funded by the Operational Program “Competitiveness, Entrepreneurship, and Innovation” (NSRF 2014‐2020) and co‐financed by Greece and the European Union (European Regional Development Fund). Y.S. and K.S. acknowledge JSPS KAKENHI (Grant Nos. JP19K05223 and JP16H06333, respectively) for financial support. |
Εμφανίζεται στις συλλογές: | Ινστιτούτο Θεωρητικής και Φυσικής Χημείας (ΙΘΦΧ) - Επιστημονικό έργο
|
Αρχεία σε αυτό το τεκμήριο:
Το πλήρες κείμενο αυτού του τεκμηρίου δεν διατίθεται προς το παρόν από τον ΗΛΙΟ.