Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/10442/17122
Export to:   BibTeX  | EndNote  | RIS
Εξειδίκευση τύπου : Άρθρο σε επιστημονικό περιοδικό
Τίτλος: Nanothermodynamics mediates drug delivery
Δημιουργός/Συγγραφέας: Stefi A.L.
[EL] Σαραντοπούλου, Ευαγγελία[EN] Sarantopoulou, Evangeliasemantics logo
[EL] Κόλλια, Ζωή[EN] Kollia, Zoesemantics logo
Spyropoulos-Antonakakis N.
Bourkoula A.
Petrou P.S.
Kakabakos S.
Soras G.
Trohopoulos P.N.
Nizamutdinov A.S.
Semashko V.V.
[EL] Κεφαλάς, Αλκιβιάδης Κωνσταντίνος[EN] Cefalas, Alciviadis Constantinossemantics logo
Εκδότης: Springer New York LLC
Ημερομηνία: 2015
Γλώσσα: Αγγλικά
ISSN: 0065-2598
DOI: 10.1007/978-3-319-08927-0_28
Άλλο: PubMed ID: 25416996
Περίληψη: The efficiency of penetration of nanodrugs through cell membranes imposes further complexity due to nanothermodynamic and entropic potentials at interfaces. Action of nanodrugs is effective after cell membrane penetration. Contrary to diffusion of water diluted common molecular drugs, nanosize imposes an increasing transport complexity at boundaries and interfaces (e.g., cell membrane). Indeed, tiny dimensional systems brought the concept of “nanothermodynamic potential,” which is proportional to the number of nanoentities in a macroscopic system, from either the presence of surface and edge effects at the boundaries of nanoentities or the restriction of the translational and rotational degrees of freedom of molecules within them. The core element of nanothermodynamic theory is based on the assumption that the contribution of a nanosize ensemble to the free energy of a macroscopic system has its origin at the excess interaction energy between the nanostructured entities. As the size of a system is increasing, the contribution of the nanothermodynamic potential to the free energy of the system becomes negligible. Furthermore, concentration gradients at boundaries, morphological distribution of nanoentities, and restriction of the translational motion from trapping sites are the source of strong entropic potentials at the interfaces. It is evident therefore that nanothermodynamic and entropic potentials either prevent or allow enhanced concentration very close to interfaces and thus strongly modulate nanoparticle penetration within the intracellular region. In this work, it is shown that nano-sized polynuclear iron (III)-hydroxide in sucrose nanoparticles have a nonuniform concentration around the cell membrane of macrophages in vivo, compared to uniform concentration at hydrophobic prototype surfaces. The difference is attributed to the presence of entropic and nanothermodynamic potentials at interfaces.
Τίτλος πηγής δημοσίευσης: Advances in Experimental Medicine and Biology
Τόμος/Κεφάλαιο: 822
Σελίδες: 213-220
Θεματική Κατηγορία: [EL] Φυσική και θεωρητική χημεία[EN] Physical and theoretical chemistrysemantics logo
[EL] Εφαρμοσμένη οπτική. Φωτονική[EN] Applied optics. Photonicssemantics logo
Αξιολόγηση από ομότιμους (peer reviewed): Ναι
Κάτοχος πνευματικών δικαιωμάτων: © Springer International Publishing Switzerland 2015.
Σημειώσεις: European Commission, EC: 310337, FP7-NMP-2012-LARGE-6; Government Council on Grants, Russian Federation
Partial financial support from the European Union, under the FP7-NMP-2012-LARGE-6 “CosmoPhos-Nano” project (reference number: 310337), and from the Russian Government under the Grand No. 02.A03.21.0002.
Εμφανίζεται στις συλλογές:Ινστιτούτο Θεωρητικής και Φυσικής Χημείας (ΙΘΦΧ) - Επιστημονικό έργο

Αρχεία σε αυτό το τεκμήριο:
Το πλήρες κείμενο αυτού του τεκμηρίου δεν διατίθεται προς το παρόν από τον ΗΛΙΟ.