Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/10442/17338
Εξειδίκευση τύπου : | Άρθρο σε επιστημονικό περιοδικό |
Τίτλος: | Surface-Enhanced Raman Spectroscopy of Graphene Integrated in Plasmonic Silicon Platforms with Three-Dimensional Nanotopography |
Δημιουργός/Συγγραφέας: | Kanidi M. Dagkli A. Kelaidis N. [EL] Παλλές, Δημήτρης[EN] Palles, Dimitris Aminalragia-Giamini S. Marquez-Velasco J. Colli A. Dimoulas A. Lidorikis E. [EL] Κάνδυλα, Μαρία[EN] Kandyla, Maria [EL] Καμίτσος, Ευστράτιος Ι.[EN] Kamitsos, Efstratios I. |
Εκδότης: | American Chemical Society |
Ημερομηνία: | 2019 |
Γλώσσα: | Αγγλικά |
ISSN: | 1932-7447 |
DOI: | 10.1021/acs.jpcc.8b10356 |
Περίληψη: | Integrating graphene with plasmonic nanostructures results in multifunctional hybrid systems with enhanced performance for numerous applications. In this work, we take advantage of the remarkable mechanical properties of graphene to combine it with scalable three-dimensional (3D) plasmonic nanostructured silicon substrates, which enhance the interaction of graphene with electromagnetic radiation. Large areas of femtosecond laser-structured arrays of silicon nanopillars, decorated with gold nanoparticles, are integrated with graphene, which conforms to the substrate nanotopography. We obtain Raman spectra at 488, 514, 633, and 785 nm excitation wavelengths, spanning the entire visible range. For all excitation wavelengths, the Raman signal of graphene is enhanced by 2-3 orders of magnitude, similarly to the highest enhancements measured to date, concerning surface-enhanced Raman spectroscopy of graphene on plasmonic substrates. Moreover, in contrast to traditional deposition and lithographic methods, the fabrication method employed here relies on single-step, maskless, cost-effective, rapid laser processing of silicon in water, amenable to large-scale fabrication. Finite-difference time-domain simulations elucidate the advantages of the 3D topography of the substrate. Conformation of graphene to Au-decorated silicon nanopillars enables graphene to sample near fields from an increased number of nanoparticles. Due to synergistic effects with the nanopillars, different nanoparticles become more active for different wavelengths and locations on the pillars, providing broad-band enhancement. Nanostructured plasmonic silicon is a promising platform for integration with graphene and other 2D materials, for next-generation applications of large-area hybrid nanomaterials in the fields of sensing, photonics, optoelectronics, and medical diagnostics.© 2019 American Chemical Society. |
Τίτλος πηγής δημοσίευσης: | Journal of Physical Chemistry C |
Τόμος/Κεφάλαιο: | 123 |
Τεύχος: | 5 |
Σελίδες: | 3076-3087 |
Θεματική Κατηγορία: | [EL] Φυσική και θεωρητική χημεία[EN] Physical and theoretical chemistry [EL] Φασματοσκοπία[EN] Spectroscopy |
Αξιολόγηση από ομότιμους (peer reviewed): | Ναι |
Όροι και προϋποθέσεις δικαιωμάτων: | All Open Access, Green |
Σημειώσεις: | Horizon 2020 Framework Programme, H2020: 785219; European Commission, EC: 696656, MIS 5002409; General Secretariat for Research and Technology, GSRT; European Regional Development Fund, FEDER; Hellenic Foundation for Research and Innovation, HFRI The authors acknowledge the support by the EU Graphene Flagship (no. 696656) and by the project “Advanced Materials and Devices” (MIS 5002409), which is implemented under the “Action for the Strategic Development on the Research and Technological Sector”, funded by the Operational Program “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund). |
Εμφανίζεται στις συλλογές: | Ινστιτούτο Θεωρητικής και Φυσικής Χημείας (ΙΘΦΧ) - Επιστημονικό έργο
|
Αρχεία σε αυτό το τεκμήριο:
Το πλήρες κείμενο αυτού του τεκμηρίου δεν διατίθεται προς το παρόν από τον ΗΛΙΟ.