Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/10442/17949
Εξειδίκευση τύπου : | Άρθρο σε επιστημονικό περιοδικό |
Τίτλος: | XR-RF Imaging Enabled by Software-Defined Metasurfaces and Machine Learning: Foundational Vision, Technologies and Challenges |
Δημιουργός/Συγγραφέας: | Liaskos, Christos Tsioliaridou, Ageliki Georgopoulos, Konstantinos Morianos, Ioannis Ioannidis, Sotiris Salem, Iosif Manessis, Dionysios Schmid, Stefan Tyrovolas, Dimitrios Tegos, Sotiris A. Mekikis, Prodromos-Vasileios Diamantoulakis, Panagiotis D. Pitilakis, Alexandros Kantartzis, Nikolaos V. Karagiannidis, George K. Tasolamprou, Anna C. [EL] Τσιλιπάκος Οδυσσέας[EN] Tsilipakos, Odysseas Kafesaki, Maria Akyildiz, Ian F. Pitsillides, Andreas Pateraki, Maria Vakalellis, Michael Spais, Ilias |
Ημερομηνία: | 2022-11-04 |
Γλώσσα: | Αγγλικά |
ISSN: | 2169-3536 |
DOI: | 10.1109/ACCESS.2022.3219871 |
Περίληψη: | We present a new approach to Extended Reality (XR), denoted as iCOPYWAVES,
which seeks to offer naturally low-latency operation and cost-effectiveness,
overcoming the critical scalability issues faced by existing solutions.
iCOPYWAVES is enabled by emerging PWEs, a recently proposed technology in
wireless communications. Empowered by intelligent (meta)surfaces, PWEs
transform the wave propagation phenomenon into a software-defined process. We
leverage PWEs to i) create, and then ii) selectively copy the scattered RF
wavefront of an object from one location in space to another, where a machine
learning module, accelerated by FPGAs, translates it to visual input for an XR
headset using PWEdriven, RF imaging principles (XR-RF). This makes for an XR
system whose operation is bounded in the physical layer and, hence, has the
prospects for minimal end-to-end latency. Over large distances,
RF-to-fiber/fiber-to-RF is employed to provide intermediate connectivity. The
paper provides a tutorial on the iCOPYWAVES system architecture and workflow. A
proof-of-concept implementation via simulations is provided, demonstrating the
reconstruction of challenging objects in iCOPYWAVES produced computer graphics. |
Τίτλος πηγής δημοσίευσης: | IEEE Access |
Τόμος/Κεφάλαιο: | 10 |
Σελίδες: | 119841-119862 |
Θεματική Κατηγορία: | [EL] Εφαρμοσμένη οπτική. Φωτονική[EN] Applied optics. Photonics |
Λέξεις-Κλειδιά: | Wireless comunications Microwave imaging Machine learning Extended reality |
Αξιολόγηση από ομότιμους (peer reviewed): | Ναι |
Ηλεκτρονική διεύθυνση με ανοικτή πρόσβαση (link): | https://ieeexplore.ieee.org/abstract/document/9940297 |
Ηλεκτρονική διεύθυνση στον εκδότη (link): | https://ieeexplore.ieee.org/abstract/document/9940297 |
Ηλεκτρονική διεύθυνση περιοδικού (link) : | https://ieeeaccess.ieee.org/ |
Εμφανίζεται στις συλλογές: | Ινστιτούτο Θεωρητικής και Φυσικής Χημείας (ΙΘΦΧ) - Επιστημονικό έργο
|