Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/10442/17952
Export to:   BibTeX  | EndNote  | RIS
Εξειδίκευση τύπου : Άρθρο σε επιστημονικό περιοδικό
Τίτλος: An automated machine learning architecture for the accelerated prediction of metal-organic frameworks performance in energy and environmental applications
Δημιουργός/Συγγραφέας: Tsamardinos, Ioannis
Fanourgakis, George S.
Greasidou, Elissavet
[EL] Κλώντζας, Εμμανουήλ[EN] Klontzas, Emmanuelsemantics logo
Gkagkas, Konstantinos
Froudakis, George E.
Εκδότης: Elsevier
Ημερομηνία: 2020
Γλώσσα: Αγγλικά
ISSN: 13871811
DOI: 10.1016/j.micromeso.2020.110160
Περίληψη: Due to their exceptional host-guest properties, Metal-Organic Frameworks (MOFs) are promising materials for storage of various gases with environmental and technological interest. Molecular modeling and simulations are invaluable tools, extensively used over the last two decades for the study of various properties of MOFs. In particular, Monte Carlo simulation techniques have been employed for the study of the gas uptake capacity of several MOFs at a wide range of different thermodynamic conditions. Despite the accurate predictions of molecular simulations, the accurate characterization and the high-throughput screening of the enormous number of MOFs that can be potentially synthesized by combining various structural building blocks is beyond present computer capabilities. In this work, we propose and demonstrate the use of an alternative approach, namely one based on an Automated Machine Learning (AutoML) architecture that is capable of training machine learning and statistical predictive models for MOFs’ chemical properties and estimate their predictive performance with confidence intervals. The architecture tries numerous combinations of different machine learning (ML) algorithms, tunes their hyper-parameters, and conservatively estimates performance of the final model. We demonstrate that it correctly estimates performance even with few samples (<100) and that it provides improved predictions over trying a single standard method, like Random Forests. The AutoML pipeline democratizes ML to non-expert material-science practitioners that may not know which algorithms to use on a given problem, how to tune them, and how to correctly estimate their predictive performance, dramatically improving productivity and avoiding common analysis pitfalls. A demonstration on the prediction of the carbon dioxide and methane uptake at various thermodynamic conditions is used as a showcase sharable at https://app.jadbio.com/share/86477fd7-d467-464d-ac41-fcbb0475444b.
Τίτλος πηγής δημοσίευσης: Microporous and Mesoporous Materials
Τόμος/Κεφάλαιο: 300
Σελίδες: 110160
Θεματική Κατηγορία: [EL] Χημεία (Γενικά)[EN] Chemistry (General)semantics logo
[EL] Στατιστική[EN] Statisticssemantics logo
[EL] Ηλεκτρονικοί υπολογιστές. Επιστήμη των υπολογιστών[EN] Electronic computers. Computer sciencesemantics logo
[EL] Πληροφορική[EN] Information technologysemantics logo
Λέξεις-Κλειδιά: Metal-Organic Frameworks
Energy
Automated Machine Learning (AutoML)
Methane
Cardon dioxide
Environmental application
Κάτοχος πνευματικών δικαιωμάτων: Copyright © 2020 Elsevier Inc. All rights reserved.
Ηλεκτρονική διεύθυνση στον εκδότη (link): https://www.sciencedirect.com/science/article/abs/pii/S1387181120301633?via%3Dihub
Ηλεκτρονική διεύθυνση περιοδικού (link) : https://www.sciencedirect.com/journal/microporous-and-mesoporous-materials
Εμφανίζεται στις συλλογές:Ινστιτούτο Θεωρητικής και Φυσικής Χημείας (ΙΘΦΧ) - Επιστημονικό έργο

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΣελίδεςΜέγεθοςΜορφότυποςΈκδοσηΆδεια
TSAMARDINOS (2020).pdf
  Restricted Access
2.1 MBAdobe PDF-ccbyncndΔείτε/ανοίξτε