Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/10442/18694
Export to:   BibTeX  | EndNote  | RIS
Εξειδίκευση τύπου : Άρθρο σε επιστημονικό περιοδικό
Τίτλος: Network-Based Prediction of Side Effects of Repurposed Antihypertensive Sartans against COVID-19 via Proteome and Drug-Target Interactomes
Δημιουργός/Συγγραφέας: Kiouri, Despoina P
Ntallis, Charalampos
Kelaidonis, Konstantinos
Peana, Massimiliano
Tsiodras, Sotirios
[EL] Μαυρομούστακος, Θωμάς[EN] Mavromoustakos, Thomassemantics logo
Giuliani, Alessandro
Ridgway, Harry
Moore, Graham J
Matsoukas, John M
[EL] Χασάπης, Χρήστος[EN] Chasapis, Christossemantics logo
Ημερομηνία: 2023-06-08
Γλώσσα: Αγγλικά
ISSN: 2227-7382
DOI: 10.3390/proteomes11020021
Άλλο: 37368467
Περίληψη: The potential of targeting the Renin-Angiotensin-Aldosterone System (RAAS) as a treatment for the coronavirus disease 2019 (COVID-19) is currently under investigation. One way to combat this disease involves the repurposing of angiotensin receptor blockers (ARBs), which are antihypertensive drugs, because they bind to angiotensin-converting enzyme 2 (ACE2), which in turn interacts with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. However, there has been no in silico analysis of the potential toxicity risks associated with the use of these drugs for the treatment of COVID-19. To address this, a network-based bioinformatics methodology was used to investigate the potential side effects of known Food and Drug Administration (FDA)-approved antihypertensive drugs, Sartans. This involved identifying the human proteins targeted by these drugs, their first neighbors, and any drugs that bind to them using publicly available experimentally supported data, and subsequently constructing proteomes and protein-drug interactomes. This methodology was also applied to Pfizer's Paxlovid, an antiviral drug approved by the FDA for emergency use in mild-to-moderate COVID-19 treatment. The study compares the results for both drug categories and examines the potential for off-target effects, undesirable involvement in various biological processes and diseases, possible drug interactions, and the potential reduction in drug efficiency resulting from proteoform identification.
Τίτλος πηγής δημοσίευσης: Proteomes
Τόμος/Κεφάλαιο: 11
Τεύχος: 2
Θεματική Κατηγορία: [EL] Βιοχημεία[EN] Biochemistrysemantics logo
[EL] Δομική Βιολογία[EN] Structural Biologysemantics logo
[EL] Βιοπληροφορική[EN] Bioinformaticssemantics logo
[EL] Φαρμακευτική[EN] Pharmacy and materia medicasemantics logo
Λέξεις-Κλειδιά: Angiotensin receptor blockers
Sartans
Coronavirus disease 19
Angiotensin-Converting Enzyme 2
Protein–protein interaction networks
Drug–drug interaction prediction
off-target interaction prediction
Gene ontology
Κάτοχος πνευματικών δικαιωμάτων: © 2023 by the authors. Licensee MDPI, Basel, Switzerland.
Όροι και προϋποθέσεις δικαιωμάτων: This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
Ηλεκτρονική διεύθυνση στον εκδότη (link): https://www.mdpi.com/2227-7382/11/2/21
Εμφανίζεται στις συλλογές:Ινστιτούτο Χημικής Βιολογίας - Επιστημονικό έργο

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΣελίδεςΜέγεθοςΜορφότυποςΈκδοσηΆδεια
Kiouri et al_2023_proteomes-11-00021.pdfopen access article7.91 MBAdobe PDFΔημοσιευμένη/του ΕκδότηccbyThumbnail
Δείτε/ανοίξτε