Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/10442/18741
Export to:   BibTeX  | EndNote  | RIS
Τίτλος : Multi-scale modeling of complex systems
Δημιουργός/Ομιλητής : [EL] Ρισσάνου, Αναστασία[EN] Rissanou, Anastassiasemantics logo
Ιδιότητα ομιλητή: Associate Researcher Theoretical and Physical Chemistry National Hellenic Research Institute
Εξειδίκευση τύπου : Οπτική παρουσίαση
Ημερομηνία: 2022
Γλώσσα : Αγγλικά
Περίληψη : Molecular simulations provide a very useful tool for the exploration and the understanding of the properties of various materials. Application of these techniques however, is not always straightforward when a broad range of length and time scales characterizes the materials under investigation. One example of such systems is the polymers which exhibit length scales ranging from ~up to ~ tens of nm and corresponding time scales ranging from a few femtoseconds up to the order of milliseconds or even seconds. Another case is that of bio-inspired materials, where one of the main challenges is to develop a fundamental understanding of biological structures and their self-assembly mechanisms and consequently to engineer innovative biobased materials for a wide range of applications. However, supramolecular structures, which are frequent in all living systems, may range from bimolecular receptorligand complexes in the nanometer scale, to macroscopic, self-assembled fibrils such as silk and amyloid fibers that are responsible for major human disorders. Furthermore nanocomposites, which have been widely used both in polymeric systems and in biomedical fields, constitute an additional degree of complexity. For a better exploitation of the various nanotechnology applications, it is necessary to understand the detailed structure-properties relationships of these complex systems. Therefore there is a very broad range of spatiotemporal scales, which need to be probed in order to predict macroscopic properties directly from the monomeric structure. To address this challenge, complementary to experimental methods, simulation methodologies, across various scales, are valuable tools for the guidance and/or the support of the rational design of these materials in the laboratory. Our approach is the development of a computational platform based on systematic hierarchical techniques that involve microscopic (all-atom Molecular Dynamics, MD) and mesoscopic (coarse-grained, CG) simulations as well as mathematical approaches in a consistent way. Multi-scale simulation methods combine atomistic and CG
Όνομα εκδήλωσης: Computational Materials Science
Ημ/νία έναρξης εκδήλωσης : 2022-12-10
Τόπος εκδήλωσης: University of Ioannina
Θεματική κατηγορία: [EL] Χημεία[EN] Chemistrysemantics logo
[EL] Φυσική και θεωρητική χημεία[EN] Physical and theoretical chemistrysemantics logo
Λέξεις-Κλειδιά: Polymers
Molecular Simulations
Nanotechnology
Complex Systems
Materials science
Έχει σχέση με: http://cmsl.materials.uoi.gr/cms22/
Εμφανίζεται στις συλλογές:Ινστιτούτο Θεωρητικής και Φυσικής Χημείας (ΙΘΦΧ) - Επιστημονικό έργο

Αρχεία σε αυτό το τεκμήριο:
Το πλήρες κείμενο αυτού του τεκμηρίου δεν διατίθεται προς το παρόν από τον ΗΛΙΟ.