Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/10442/19023
Export to:   BibTeX  | EndNote  | RIS
Εξειδίκευση τύπου : Άρθρο σε επιστημονικό περιοδικό
Τίτλος: Bifunctional Nanostructured Palladium/MoSx Electrocatalyst for Cathode Hydrogen Evolution Reaction PEM Water Electrolysis and Oxygen Reduction Reaction
Δημιουργός/Συγγραφέας: Kagkoura, Antonia
Karamoschos, Nikolaos
Perivoliotis, Dimitrios K.
García, Alexis Piñeiro
Gracia‐Espino, Eduardo
Tasis, Dimitrios
[EL] Ταγματάρχης, Νίκος[EN] Tagmatarchis, Nikossemantics logo
Εκδότης: John Wiley and Sons Inc
Ημερομηνία: 2023
Γλώσσα: Αγγλικά
ISSN: 2366-7486
2366-7486
DOI: 10.1002/adsu.202200518
Περίληψη: The creation of effective Pd-based architectures with numerous electrocatalytic active sites and efficient charge transfer is of key importance for improving the electrocatalytic performance in water electrolyzer and fuel cell applications. On the other hand, MoS2, possessing multiple electrocatalytic active sites, can act both as support and booster to Pd-based electrocatalytic structures. Herein, MoSx@Pd hybrids were successfully synthesized by using a one-pot liquid phase solvothermal strategy with stoichiometric excess of Pd. The optimized MoSx@Pd proves to be an excellent bifunctional electrocatalyst for both hydrogen evolution reaction and oxygen reduction reaction (ORR). Optimized MoSx@Pd operates the process for hydrogen evolution at the same potential as Pt/C and achieves a low overpotential of 76 mV at −10 mA cm−2 due to improved reaction kinetics and charge transfer processes between Pd and MoS2. On top of that, MoSx@Pd exhibits excellent performance and stability as cathode electrocatalyst in a polymer electrolyte membrane water electrolyzer. Simultaneously, the bifunctional electrocatalyst shows enhanced electrocatalytic ORR activity and stability by maintaining 93% of its initial activity outperforming commercial Pt/C. Finally, rotating ring disk electrode analysis reveals that ORR proceeds through the energy efficient 4e− pathway, with water being the main product, rendering MoSx@Pd a promising component for fuel cells.
Τίτλος πηγής δημοσίευσης: Advanced Sustainable Systems
Τόμος/Κεφάλαιο: 7
Τεύχος: 5
Θεματική Κατηγορία: [EL] Χημική μηχανική[EN] Chemical engineeringsemantics logo
[EL] Φυσική και θεωρητική χημεία[EN] Physical and theoretical chemistrysemantics logo
Λέξεις-Κλειδιά: Electrocatalyst
Hydrogen evolution reaction
Oxygen reduction reaction
Polymer electrolyte membranes
Transition metal dichalcogenides
Water electrolysis
EU Grant identifier: 2018–05973
CTS 21–1581
JCK‐2021
2018‐03937
JCK‐2132
Κάτοχος πνευματικών δικαιωμάτων: © 2023 Wiley-VCHGmbH
Ηλεκτρονική διεύθυνση στον εκδότη (link): https://doi.org/10.1002/adsu.202200518
Σημειώσεις: The access on FORTH/ICEHT facilities is greatly acknowledged and especially the Surface Analysis Department and the Laboratory of Applied Molecular Spectroscopy. The contribution of Dr. L. Sygellou for the XPS analysis and Prof. K. Andrikopoulos for Raman spectroscopy data is greatly appreciated. E.G.-E. acknowledges support from the Swedish Research Council (2018-03937), Kempe Foundation (JCK-2132), and Carl Tryggers Foundation (CTS 21–1581). D.K.P. acknowledges support from the Kempe Foundation (JCK-2021). The computations were enabled by resources provided by the Swedish National Infrastructure for Computing (SNIC), partially funded by the Swedish Research Council through Grant Agreement No. 2018–05973, using the resources of the High Performance Computing Center North (HPC2N). The authors also thank the Umeå Core Facility for Electron Microscopy (UCEM) at Umeå University.
Εμφανίζεται στις συλλογές:Ινστιτούτο Θεωρητικής και Φυσικής Χημείας (ΙΘΦΧ) - Επιστημονικό έργο

Αρχεία σε αυτό το τεκμήριο:
Το πλήρες κείμενο αυτού του τεκμηρίου δεν διατίθεται προς το παρόν από τον ΗΛΙΟ.