Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/10442/19118
Εξειδίκευση τύπου : | Άρθρο σε επιστημονικό περιοδικό |
Τίτλος: | Crack Identification in Solid Rocket Motors Through the Neyman–Pearson Detection Theory |
Δημιουργός/Συγγραφέας: | Cholevas, Nicholas Anyfantis, Konstantinos N. Mußbach, Günter Korompili, Georgia [EL] Ριζιώτης, Χρήστος Δ.[EN] Riziotis, Christos |
Εκδότης: | American Institute of Aeronautics and Astronautics |
Ημερομηνία: | 2023 |
Γλώσσα: | Αγγλικά |
ISSN: | 1533-385X |
DOI: | 10.2514/1.J062728 |
Περίληψη: | Solid rocket motors (SRMs) are prone to bore cracking due to material degradation mechanisms and temperature changes that occur during storage and service life, and therefore early damage detection is of crucial importance. Structural health monitoring (SHM) strategies aim at measuring the load redistribution caused by a crack through embedded strain sensors. By acknowledging the existence of uncertainties, both in the material and measurement systems, this work employs a Neyman–Pearson detector that treats the crack identification problem as a binary statistical pattern recognition one. A typical SRM geometry, at its healthy state and with a bore crack of variable size, is considered in a probabilistic computational setting. A surrogate model is trained with synthetic data generated from a physics-based finite element model and then used for uncertainty propagation. Detection is first treated as a deterministic signal within noise, and next as an uncertain signal described by a probabilistic distribution. The system’s architecture is assessed through a procedure for arriving at the optimal number and location for sensor placement in conjunction with the SHM’s detection performance. The latter is described by receiver operating characteristic curves. |
Τίτλος πηγής δημοσίευσης: | AIAA Journal |
Τόμος/Κεφάλαιο: | 61 |
Τεύχος: | 5 |
Σελίδες: | 2241-2254 |
Θεματική Κατηγορία: | [EL] Χημική μηχανική[EN] Chemical engineering [EL] Τεχνολογία[EN] Technology |
Λέξεις-Κλειδιά: | solid rocket motors sensors structural health monitoring finite element analysis numerical analysis solid propellants artificial neural network probability density functions mechanical properties |
Κάτοχος πνευματικών δικαιωμάτων: | © 2023 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. |
Ηλεκτρονική διεύθυνση στον εκδότη (link): | https://doi.org/10.2514/1.J062728 |
Εμφανίζεται στις συλλογές: | Ινστιτούτο Θεωρητικής και Φυσικής Χημείας (ΙΘΦΧ) - Επιστημονικό έργο
|
Αρχεία σε αυτό το τεκμήριο:
Το πλήρες κείμενο αυτού του τεκμηρίου δεν διατίθεται προς το παρόν από τον ΗΛΙΟ.